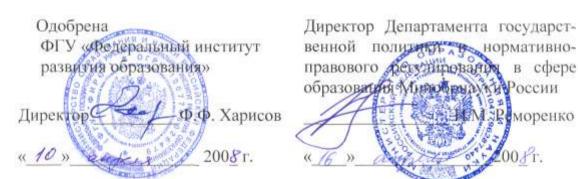
Министерство образования и науки Российской Федерации Федеральный институт развития образования

ПРИМЕРНАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ФИЗИКА

для профессий начального профессионального образования и специальностей среднего профессионального образования


Москва 2008

Министерство образования и науки Российской Федерации Федеральный институт развития образования

ПРИМЕРНАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ФИЗИКА

для профессий начального профессионального образования и специальностей среднего профессионального образования

ПРИМЕРНАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ФИЗИКА

для профессий начального профессионального образования и специальностей среднего профессионального образования

Автор: Пентин А.Ю., кандидат физико-математических наук

Рецензенты: Афонина И.Ю., зам. директора по учебной работе ГОУ

СПО «Железнодорожного колледжа» № 52, препода-

ватель физики

Орлов В.А., зав. лабораторией физического образова-

ния ИСМО РАО, кандидат педагогических наук

Программа разработана в соответствии с «Рекомендациями по реализации образовательной программы среднего (полного) общего образования в образовательных учреждениях начального профессионального и среднего профессионального образования в соответствии с федеральным базисным учебным планом и примерными учебными планами для образовательных учреждений Российской Федерации, реализующих программы общего образования» (письмо Департамента государственной политики и нормативно-правового регулирования в сфере образования Минобрнауки России от 29.05.2007 № 03-1180).

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Примерная программа учебной дисциплины «Физика» предназначена для изучения физики в учреждениях начального и среднего профессионального образования, реализующих образовательную программу среднего (полного) общего образования, при подготовке квалифицированных рабочих и специалистов среднего звена.

Согласно «Рекомендациям по реализации среднего (полного) общего образования в образовательных учреждениях начального профессионального и среднего профессионального образования» (письмо Департамента государственной политики и нормативно-правового регулирования в сфере образования Минобрнауки России от 29.05.2007 № 03-1180) физика изучается в учреждениях начального профессионального образования (далее — НПО) и среднего профессионального образования (далее — СПО) с учетом профиля получаемого профессионального образования.

При освоении профессий НПО и специальностей СПО технического профиля физика изучается как профильный учебный предмет: в учреждениях НПО — в объеме 273—178 часов * , в учреждениях СПО — 195 часов.

При освоении профессий НПО и специальностей СПО естественно-научного профиля физика изучается также как профильный учебный предмет: в учреждениях НПО – в объеме 234—173 часа*, в учреждениях СПО – в объеме 156 часов.

При освоении профессий НПО и специальностей СПО социальноэкономического и гуманитарного профилей физика изучается по программе учебной дисциплины «Естествознание».

Примерная программа ориентирована на достижение следующих целей:

- освоение знаний о фундаментальных физических законах и принципах, лежащих в основе современной физической картины мира; наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; методах научного познания природы;
- овладение умениями проводить наблюдения, планировать и эксперименты, выдвигать гипотезы И выполнять строить модели, применять полученные знания ПО физике объяснения разнообразных физических явлений и свойств веществ; практического использования физических знаний; оценивать достоверность естественно-научной информации;

^{*} В зависимости от общего объема учебного времени, выделяемого в учебном плане учреждения начального профессионального образования на общеобразовательную подготовку.

- **развитие** познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний и умений по физике с использованием различных источников информации и современных информационных технологий;
- **воспитание** убежденности в возможности познания законов природы; использования достижений физики на благо развития человеческой цивилизации; необходимости сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента при обсуждении проблем естественнонаучного содержания; готовности к морально-этической оценке использования научных достижений, чувства ответственности за защиту окружающей среды;
- использование приобретенных знаний и умений для решения практических задач повседневной жизни, обеспечения безопасности собственной жизни, рационального природопользования и охраны окружающей среды.

Основу данной программы составляет содержание, согласованное с требованиями федерального компонента стандарта среднего (полного) общего образования базового уровня.

В профильную составляющую входит профессионально направленное содержание, необходимое для усвоения профессиональной образовательной программы, формирования у обучающихся профессиональных компетенций.

В программе по физике, реализуемой при подготовке обучающихся по профессиям и специальностям технического профиля, профильной составляющей является раздел «Электродинамика», так как большинство профессий и специальностей, относящихся к этому профилю, связаны с электротехникой и электроникой.

Программа, реализуемая при подготовке обучающихся по профессиям и специальностям естественно-научного профиля, не имеет явно выраженной профильной составляющей, так как профессии и специальности, относящиеся к этому профилю обучения, не имеют преимущественной связи с тем или иным разделом физики. Однако в зависимости от получаемой профессии в рамках естественно-научного профиля повышенное внимание может быть уделено изучению раздела «Молекулярная физика. Термодинамика», отдельных тем раздела «Электродинамика» и особенно тем экологического содержания, присутствующих почти в каждом разделе.

В программе теоретические сведения дополняются демонстрациями, лабораторными и практическими работами.

Программа содержит примерные тематические планы, отражающие количество часов, выделяемое на изучение физики в учреждениях НПО и СПО при овладении обучающимися профессиями и специальностями технического и естественно-научного профилей.

В тематические планы включены физический практикум, предусматривающий выполнение лабораторных работ и решение более сложных задач на материале того раздела физики, который связан с получаемой профессией, а также резерв учебного времени, предоставляющий преподавателю возможность внести в содержание обучения дополнительный профессионально значимый материал.

Примерная программа учебной дисциплины «Физика» служит основой для разработки рабочих программ, в которых образовательные учреждения начального и среднего профессионального образования уточняют последовательность изучения учебного материала, демонстраций, лабораторных работ, распределение учебных часов с учетом профиля получаемого профессионального образования.

Программа может использоваться другими образовательными учреждениями, реализующими образовательную программу среднего (полного) общего образования.

Технический профиль

ПРИМЕРНОЕ СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Содержание обучения в учреждениях НПО (273 час.)

Введение

Физика — наука о природе. Естественно-научный метод познания, его возможности и границы применимости. Моделирование физических явлений и процессов. Роль эксперимента и теории в процессе познания природы. Физические законы. Основные элементы физической картины мира.

1. МЕХАНИКА

Относительность механического движения. Системы отсчета. Характеристики механического движения: перемещение, скорость, ускорение. Виды движения (равномерное, равноускоренное) и их графическое описание. Движение по окружности с постоянной по модулю скоростью. Центростремительное ускорение.

Взаимодействие тел. Принцип суперпозиции сил. Законы динамики Ньютона. Силы в природе: упругость, трение, сила тяжести. Закон всемирного тяготения. Невесомость.

Закон сохранения импульса и реактивное движение. Закон сохранения механической энергии. Работа и мощность.

Прикладные задачи механики (расчет траекторий космических кораблей, проектирование автомобилей, самолетов, строительных сооружений).

Механические колебания. Амплитуда, период, частота, фаза колебаний. Свободные и вынужденные колебания. Резонанс. Механические волны. Свойства механических волн. Длина волны. Звуковые волны. Ультразвук и его использование в технике и медицине.

Демонстрации

Зависимость траектории от выбора системы отсчета.

Виды механического движения.

Зависимость ускорения тела от его массы и силы, действующей на тело.

Сложение сил.

Равенство и противоположность направления сил действия и противодействия.

Зависимость силы упругости от деформации.

Силы трения.

Невесомость.

Реактивное движение.

Переход потенциальной энергии в кинетическую и обратно.

Свободные и вынужденные колебания.

Резонанс.

Образование и распространение волн.

Частота колебаний и высота тона звука.

Лабораторные работы

Исследование движения тела под действием постоянной силы.

Изучение закона сохранения импульса и реактивного движения.

Сохранение механической энергии при движении тела под действием сил тяжести и упругости.

Сравнение работы силы с изменением кинетической энергии тела.

Изучение зависимости периода колебаний нитяного (или пружинного) маятника от длины нити (или массы груза).

2. МОЛЕКУЛЯРНАЯ ФИЗИКА. ТЕРМОДИНАМИКА

История атомистических учений. Наблюдения и опыты, подтверждающие атомно-молекулярное строение вещества. Масса и размеры молекул. Тепловое движение. Абсолютная температура как мера средней кинетической энергии частиц.

Объяснение агрегатных состояний вещества на основе атомномолекулярных представлений. Модель идеального газа. Связь между давлением и средней кинетической энергией молекул газа. Изопроцессы. Модель строения жидкости. Насыщенные и ненасыщенные пары. Влажность воздуха. Поверхностное натяжение и смачивание. Модель строения твердых тел. Механические свойства твердых тел. Аморфные вещества и жидкие кристаллы. Изменения агрегатных состояний вещества.

Внутренняя энергия и работа газа. Первый закон термодинамики. Необратимость тепловых процессов и второй закон термодинамики. Тепловые двигатели и охрана окружающей среды. КПД тепловых двигателей.

Демонстрации

Движение броуновских частиц.

Диффузия.

Изменение давления газа с изменением температуры при постоянном объеме.

Изотермический и изобарный процессы.

Кипение воды при пониженном давлении.

Психрометр и гигрометр.

Явления поверхностного натяжения и смачивания.

Кристаллы, аморфные вещества, жидкокристаллические тела.

Изменение внутренней энергии тел при совершении работы.

Модели тепловых двигателей.

Лабораторные работы

Измерение влажности воздуха.

Измерение поверхностного натяжения жидкости.

Наблюдение роста кристаллов из раствора.

3. ЭЛЕКТРОДИНАМИКА

Взаимодействие заряженных тел. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Электрическое поле. Напряженность поля. Потенциал поля. Разность потенциалов.

Проводники в электрическом поле. Электрическая емкость. Конденсатор. Диэлектрики в электрическом поле.

Постоянный электрический ток. Сила тока, напряжение, электрическое сопротивление. Закон Ома для участка цепи. Последовательное и параллельное соединения проводников. ЭДС источника тока. Закон Ома для полной цепи.

Тепловое действие электрического тока. Закон Джоуля—Ленца. Мощность электрического тока.

Полупроводники. Собственная и примесная проводимости полупроводников. Полупроводниковый диод. Полупроводниковые приборы.

Магнитное поле. Постоянные магниты и магнитное поле тока. Сила Ампера. Сила Лоренца. Принцип действия электродвигателя. Электроизмерительные приборы.

Индукция магнитного поля. Магнитный поток. Явление электромагнитной индукции и закон электромагнитной индукции Фарадея. Вихревое электрическое поле. Правило Ленца. Самоиндукция. Индуктивность (12).

Принцип действия электрогенератора. Переменный ток. Трансформатор. Производство, передача и потребление электроэнергии. Проблемы энергосбережения. Техника безопасности в обращении с электрическим током.

Колебательный контур. Свободные электромагнитные колебания. Вынужденные электромагнитные колебания. Действующие значения силы тока и напряжения. Конденсатор и катушка в цепи переменного тока. Активное сопротивление. Электрический резонанс.

Электромагнитное поле и электромагнитные волны. Скорость электромагнитных волн. Принципы радиосвязи и телевидения.

Свет как электромагнитная волна. Интерференция и дифракция света. Поляризация света. Законы отражения и преломления света. Полное внутреннее отражение. Дисперсия света. Различные виды электромагнитных излучений, их свойства и практические применения. Формула тонкой линзы. Оптические приборы. Разрешающая способность оптических приборов.

Демонстрации

Взаимодействие заряженных тел.

Проводники в электрическом поле.

Диэлектрики в электрическом поле.

Конденсаторы.

Тепловое действие электрического тока.

Собственная и примесная проводимости полупроводников.

Полупроводниковый диод.

Транзистор.

Опыт Эрстеда.

Взаимодействие проводников с токами.

Отклонение электронного пучка магнитным полем.

Электродвигатель.

Электроизмерительные приборы.

Электромагнитная индукция.

Зависимость ЭДС самоиндукции от скорости изменения силы тока и индуктивности проводника.

Работа электрогенератора.

Трансформатор.

Свободные электромагнитные колебания.

Осциллограмма переменного тока.

Конденсатор в цепи переменного тока.

Катушка в цепи переменного тока.

Резонанс в последовательной цепи переменного тока.

Излучение и прием электромагнитных волн.

Радиосвязь.

Интерференция света.

Дифракция света.

Поляризация света.

Законы отражения и преломления света.

Полное внутреннее отражение.

Получение спектра с помощью призмы.

Получение спектра с помощью дифракционной решетки.

Спектроскоп.

Оптические приборы

Лабораторные работы

Изучение закона Ома для участка цепи.

Измерение ЭДС и внутреннего сопротивления источника тока.

Изучение явления электромагнитной индукции.

Исследование зависимости силы тока от электроемкости конденсатора в цепи переменного тока.

Измерение индуктивности катушки.

Изучение интерференции и дифракции света.

4. СТРОЕНИЕ АТОМА И КВАНТОВАЯ ФИЗИКА

Гипотеза Планка о квантах. Фотоэффект. Фотон. Волновые и корпускулярные свойства света. Технические устройства, основанные на использовании фотоэффекта.

Строение атома: планетарная модель и модель Бора. Поглощение и испускание света атомом. Квантование энергии. Принцип действия и использование лазера.

Строение атомного ядра. Энергия связи. Связь массы и энергии. Ядерная энергетика. Радиоактивные излучения и их воздействие на живые организмы.

Демонстрации

Фотоэффект.

Излучение лазера.

Линейчатые спектры различных веществ.

Счетчик ионизирующих излучений.

5. ЭВОЛЮЦИЯ ВСЕЛЕННОЙ

Эффект Доплера и обнаружение «разбегания» галактик. Большой взрыв. Возможные сценарии эволюции Вселенной.

Эволюция и энергия горения звезд. Термоядерный синтез.

Образование планетных систем. Солнечная система.

Демонстрации

Солнечная система (модель).

Фотографии планет, сделанные с космических зондов.

Содержание обучения в учреждениях НПО (178 час.)

Введение

Физика — наука о природе. Естественно-научный метод познания, его возможности и границы применимости. Моделирование физических явлений и процессов. Роль эксперимента и теории в процессе познания природы. Физические законы. Основные элементы физической картины мира.

1. МЕХАНИКА

Относительность механического движения. Системы отсчета. Характеристики механического движения: перемещение, скорость, ускорение. Виды движения (равномерное, равноускоренное) и их графическое описание.

Взаимодействие тел. Принцип суперпозиции сил. Законы динамики Ньютона. Силы в природе: упругость, трение, сила тяжести. Закон всемирного тяготения. Невесомость.

Закон сохранения импульса и реактивное движение. Закон сохранения механической энергии. Работа и мощность.

Механические колебания. Амплитуда, период, частота колебаний. Механические волны. Свойства механических волн. Длина волны. Звуковые волны. Ультразвук и его использование в технике и медицине.

Демонстрации

Зависимость траектории от выбора системы отсчета.

Виды механического движения.

Зависимость ускорения тела от его массы и силы, действующей на тело.

Сложение сил.

Равенство и противоположность направления сил действия и противодействия.

Зависимость силы упругости от деформации.

Силы трения.

Невесомость.

Реактивное движение.

Переход потенциальной энергии в кинетическую и обратно.

Образование и распространение волн.

Частота колебаний и высота тона звука.

Лабораторные работы

Исследование движения тела под действием постоянной силы.

Изучение закона сохранения импульса и реактивного движения.

Сохранение механической энергии при движении тела под действием сил тяжести и упругости.

2. МОЛЕКУЛЯРНАЯ ФИЗИКА. ТЕРМОДИНАМИКА

История атомистических учений. Наблюдения и опыты, подтверждающие атомно-молекулярное строение вещества. Масса и размеры молекул. Тепловое движение. Абсолютная температура как мера средней кинетической энергии частиц.

Объяснение агрегатных состояний вещества на основе атомномолекулярных представлений. Модель идеального газа. Связь между давлением и средней кинетической энергией молекул газа. Модель строения жидкости. Влажность воздуха. Поверхностное натяжение и смачивание. Модель строения твердых тел. Изменения агрегатных состояний вещества.

Внутренняя энергия и работа газа. Первый закон термодинамики. Необратимость тепловых процессов. Тепловые двигатели и охрана окружающей среды. КПД тепловых двигателей.

Демонстрации

Движение броуновских частиц.

Диффузия.

Изменение давления газа с изменением температуры при постоянном объеме.

Кипение воды при пониженном давлении.

Психрометр и гигрометр.

Явления поверхностного натяжения и смачивания.

Кристаллические вещества.

Изменение внутренней энергии тел при совершении работы.

Модели тепловых двигателей.

Лабораторные работы

Измерение влажности воздуха.

Наблюдение роста кристаллов из раствора.

3. ЭЛЕКТРОДИНАМИКА

Взаимодействие заряженных тел. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Электрическое поле. Напряженность поля. Проводники и диэлектрики в электрическом поле.

Постоянный электрический ток. Сила тока, напряжение, электрическое сопротивление. Закон Ома для участка цепи.

Тепловое действие электрического тока. Закон Джоуля—Ленца. Мощность электрического тока.

Полупроводники. Собственная и примесная проводимости полупроводников. Полупроводниковый диод. Полупроводниковые приборы (8).

Магнитное поле. Постоянные магниты и магнитное поле тока. Сила Ампера. Принцип действия электродвигателя.

Явление электромагнитной индукции. Принцип действия электрогенератора. Переменный ток. Трансформатор. Производство, передача и по-

требление электроэнергии. Проблемы энергосбережения. Техника безопасности в обращении с электрическим током.

Электромагнитное поле и электромагнитные волны. Скорость электромагнитных волн. Принципы радиосвязи.

Свет как электромагнитная волна. Интерференция и дифракция света. Законы отражения и преломления света. Дисперсия света. Различные виды электромагнитных излучений, их свойства и практические применения. Оптические приборы.

Демонстрации

Взаимодействие заряженных тел.

Проводники в электрическом поле.

Диэлектрики в электрическом поле.

Тепловое действие электрического тока.

Собственная и примесная проводимость полупроводников.

Полупроводниковый диод.

Транзистор.

Опыт Эрстеда.

Взаимодействие проводников с токами.

Электродвигатель.

Электроизмерительные приборы.

Электромагнитная индукция.

Работа электрогенератора.

Трансформатор.

Излучение и прием электромагнитных волн.

Радиосвязь.

Интерференция света.

Дифракция света.

Законы отражения и преломления света.

Получение спектра с помощью призмы.

Оптические приборы

Лабораторные работы

Изучение закона Ома для участка цепи.

Изучение явления электромагнитной индукции.

Изучение интерференции и дифракции света.

4. СТРОЕНИЕ АТОМА И КВАНТОВАЯ ФИЗИКА

Гипотеза Планка о квантах. Фотоэффект. Фотон. Волновые и корпускулярные свойства света. Технические устройства, основанные на использовании фотоэффекта.

Строение атома: планетарная модель и модель Бора. Поглощение и испускание света атомом. Квантование энергии. Принцип действия и использование лазера.

Строение атомного ядра. Энергия расщепления ядра и ядерная энергетика. Радиоактивные излучения и их воздействие на живые организмы.

Демонстрации

Фотоэффект.

Излучение лазера.

Линейчатые спектры различных веществ.

Счетчик ионизирующих излучений.

5. ЭВОЛЮЦИЯ ВСЕЛЕННОЙ

Эффект Доплера и обнаружение «разбегания» галактик. Большой взрыв. Возможные сценарии эволюции Вселенной.

Эволюция и энергия горения звезд. Термоядерный синтез.

Образование планетных систем. Солнечная система.

Демонстрации

Солнечная система (модель).

Фотографии планет, сделанные с космических зондов.

Содержание обучения в учреждениях СПО (195 час.)

Ввеление

Физика — наука о природе. Естественно-научный метод познания, его возможности и границы применимости. Моделирование физических явлений и процессов. Роль эксперимента и теории в процессе познания природы. Физические законы. Основные элементы физической картины мира.

1. МЕХАНИКА

Относительность механического движения. Системы отсчета. Характеристики механического движения: перемещение, скорость, ускорение. Виды движения (равномерное, равноускоренное) и их графическое описание. Движение по окружности с постоянной по модулю скоростью (10).

Взаимодействие тел. Принцип суперпозиции сил. Законы динамики Ньютона. Силы в природе: упругость, трение, сила тяжести. Закон всемирного тяготения. Невесомость.

Закон сохранения импульса и реактивное движение. Закон сохранения механической энергии. Работа и мощность.

Механические колебания. Амплитуда, период, частота, фаза колебаний. Свободные и вынужденные колебания. Резонанс. Механические волны. Свойства механических волн. Длина волны. Звуковые волны. Ультразвук и его использование в технике и медицине.

Демонстрации

Зависимость траектории от выбора системы отсчета.

Виды механического движения.

Зависимость ускорения тела от его массы и силы, действующей на тело.

Сложение сил.

Равенство и противоположность направления сил действия и противодействия.

Зависимость силы упругости от деформации.

Силы трения.

Невесомость.

Реактивное движение.

Переход потенциальной энергии в кинетическую и обратно.

Свободные и вынужденные колебания.

Резонанс.

Образование и распространение волн.

Частота колебаний и высота тона звука.

Лабораторные работы

Исследование движения тела под действием постоянной силы.

Изучение закона сохранения импульса и реактивного движения.

Сохранение механической энергии при движении тела под действием сил тяжести и упругости.

Изучение зависимости периода колебаний нитяного (или пружинного) маятника от длины нити (или массы груза).

2. МОЛЕКУЛЯРНАЯ ФИЗИКА. ТЕРМОДИНАМИКА

История атомистических учений. Наблюдения и опыты, подтверждающие атомно-молекулярное строение вещества. Масса и размеры молекул. Тепловое движение. Абсолютная температура как мера средней кинетической энергии частиц.

Объяснение агрегатных состояний вещества на основе атомномолекулярных представлений. Модель идеального газа. Связь между давлением и средней кинетической энергией молекул газа. Модель строения жидкости. Насыщенные и ненасыщенные пары. Влажность воздуха. Поверхностное натяжение и смачивание. Модель строения твердых тел. Механические свойства твердых тел. Аморфные вещества и жидкие кристаллы. Изменения агрегатных состояний вещества.

Внутренняя энергия и работа газа. Первый закон термодинамики. Необратимость тепловых процессов. Тепловые двигатели и охрана окружающей среды. КПД тепловых двигателей.

Демонстрации

Движение броуновских частиц.

Диффузия.

Изменение давления газа с изменением температуры при постоянном объеме.

Кипение воды при пониженном давлении.

Психрометр и гигрометр.

Явления поверхностного натяжения и смачивания.

Кристаллы, аморфные вещества, жидкокристаллические тела.

Изменение внутренней энергии тел при совершении работы.

Модели тепловых двигателей.

Лабораторные работы

Измерение влажности воздуха.

Измерение поверхностного натяжения жидкости.

Наблюдение роста кристаллов из раствора.

3. Электродинамика

Взаимодействие заряженных тел. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Электрическое поле. Напряженность поля. Потенциал поля. Разность потенциалов.

Проводники в электрическом поле. Электрическая емкость. Конденсатор. Диэлектрики в электрическом поле.

Постоянный электрический ток. Сила тока, напряжение, электрическое сопротивление. Закон Ома для участка цепи. Последовательное и параллельное соединения проводников. ЭДС источника тока.

Тепловое действие электрического тока. Закон Джоуля—Ленца. Мощность электрического тока.

Полупроводники. Собственная и примесная проводимости полупроводников. Полупроводниковый диод. Полупроводниковые приборы.

Магнитное поле. Постоянные магниты и магнитное поле тока. Сила Ампера. Принцип действия электродвигателя. Электроизмерительные приборы.

Индукция магнитного поля. Магнитный поток. Явление электромагнитной индукции и закон электромагнитной индукции Фарадея. Вихревое электрическое поле. Правило Ленца. Самоиндукция. Индуктивность.

Принцип действия электрогенератора. Переменный ток. Трансформатор. Производство, передача и потребление электроэнергии. Проблемы энергосбережения. Техника безопасности в обращении с электрическим током.

Колебательный контур. Свободные электромагнитные колебания. Вынужденные электромагнитные колебания. Действующие значения силы тока и напряжения. Конденсатор и катушка в цепи переменного тока. Активное сопротивление. Электрический резонанс.

Электромагнитное поле и электромагнитные волны. Скорость электромагнитных волн. Принципы радиосвязи и телевидения.

Свет как электромагнитная волна. Интерференция и дифракция света. Законы отражения и преломления света. Полное внутреннее отражение. Дисперсия света. Различные виды электромагнитных излучений, их свойства и практические применения. Оптические приборы. Разрешающая способность оптических приборов.

Демонстрации

Взаимодействие заряженных тел.

Проводники в электрическом поле.

Диэлектрики в электрическом поле.

Конденсаторы.

Тепловое действие электрического тока.

Собственная и примесная проводимости полупроводников.

Полупроводниковый диод.

Транзистор.

Опыт Эрстеда.

Взаимодействие проводников с токами.

Электродвигатель.

Электроизмерительные приборы.

Электромагнитная индукция.

Зависимость ЭДС самоиндукции от скорости изменения силы тока и индуктивности проводника.

Работа электрогенератора.

Трансформатор.

Свободные электромагнитные колебания.

Осциллограмма переменного тока.

Конденсатор в цепи переменного тока.

Катушка в цепи переменного тока.

Резонанс в последовательной цепи переменного тока.

Излучение и прием электромагнитных волн.

Радиосвязь.

Интерференция света.

Дифракция света.

Законы отражения и преломления света.

Полное внутреннее отражение.

Получение спектра с помощью призмы.

Получение спектра с помощью дифракционной решетки.

Спектроскоп.

Оптические приборы

Лабораторные работы

Изучение закона Ома для участка цепи.

Измерение ЭДС и внутреннего сопротивления источника тока.

Изучение явления электромагнитной индукции.

Исследование зависимости силы тока от электроемкости конденсатора в цепи переменного тока.

Измерение индуктивности катушки.

Изучение интерференции и дифракции света.

4. СТРОЕНИЕ АТОМА И КВАНТОВАЯ ФИЗИКА

Гипотеза Планка о квантах. Фотоэффект. Фотон. Волновые и корпускулярные свойства света. Технические устройства, основанные на использовании фотоэффекта.

Строение атома: планетарная модель и модель Бора. Поглощение и испускание света атомом. Квантование энергии. Принцип действия и использование лазера.

Строение атомного ядра. Энергия связи. Связь массы и энергии. Ядерная энергетика. Радиоактивные излучения и их воздействие на живые организмы.

Демонстрации

Фотоэффект.

Излучение лазера.

Линейчатые спектры различных веществ.

Счетчик ионизирующих излучений.

5. ЭВОЛЮЦИЯ ВСЕЛЕННОЙ

Эффект Доплера и обнаружение «разбегания» галактик. Большой взрыв. Возможные сценарии эволюции Вселенной.

Эволюция и энергия горения звезд. Термоядерный синтез.

Образование планетных систем. Солнечная система.

Демонстрации

Солнечная система (модель).

Фотографии планет, сделанные с космических зондов.

ПРИМЕРНЫЙ ТЕМАТИЧЕСКИЙ ПЛАН

	Количество часов		
Наименование раздела	Технический		
	профиль		
	НПО		СПО
	273	178	195
Введение	3	3	3
1. Механика	52	40	40
2. Молекулярная физика.	40	30	30
Термодинамика			
3. Электродинамика	124	72	88
4. Строение атома и квантовая физика	24	22	22
5. Эволюция Вселенной	8	8	8
Физический практикум	12	_	_
Резерв учебного времени	10	3	4
Итого	273	178	195

Естественнонаучный профиль

ПРИМЕРНОЕ СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Содержание обучения в учреждениях НПО (234 час.)

Введение

Физика — наука о природе. Естественно-научный метод познания, его возможности и границы применимости. Моделирование физических явлений и процессов. Роль эксперимента и теории в процессе познания природы. Физические законы. Основные элементы физической картины мира.

1. МЕХАНИКА

Относительность механического движения. Системы отсчета. Характеристики механического движения: перемещение, скорость, ускорение. Виды движения (равномерное, равноускоренное) и их графическое описание. Движение по окружности с постоянной по модулю скоростью.

Взаимодействие тел. Принцип суперпозиции сил. Законы динамики Ньютона. Силы в природе: упругость, трение, сила тяжести. Закон всемирного тяготения. Невесомость.

Закон сохранения импульса и реактивное движение. Закон сохранения механической энергии. Работа и мощность.

Механические колебания. Амплитуда, период, частота, фаза колебаний. Свободные и вынужденные колебания. Резонанс. Механические волны. Свойства механических волн. Длина волны. Звуковые волны. Ультразвук и его использование в технике и медицине.

Демонстрации

Зависимость траектории от выбора системы отсчета.

Виды механического движения.

Зависимость ускорения тела от его массы и силы, действующей на тело.

Сложение сил.

Равенство и противоположность направления сил действия и противодействия.

Зависимость силы упругости от деформации.

Силы трения.

Невесомость.

Реактивное движение.

Переход потенциальной энергии в кинетическую и обратно.

Свободные и вынужденные колебания.

Резонанс.

Образование и распространение волн.

Частота колебаний и высота тона звука.

Лабораторные работы

Исследование движения тела под действием постоянной силы.

Изучение закона сохранения импульса и реактивного движения.

Сохранение механической энергии при движении тела под действием сил тяжести и упругости.

Сравнение работы силы с изменением кинетической энергии тела.

Изучение зависимости периода колебаний нитяного (или пружинного) маятника от длины нити (или массы груза).

2. МОЛЕКУЛЯРНАЯ ФИЗИКА. ТЕРМОДИНАМИКА

История атомистических учений. Наблюдения и опыты, подтверждающие атомно-молекулярное строение вещества. Масса и размеры молекул. Тепловое движение. Абсолютная температура как мера средней кинетической энергии частиц.

Объяснение агрегатных состояний вещества на основе атомномолекулярных представлений. Модель идеального газа. Связь между давлением и средней кинетической энергией молекул газа. Изопроцессы. Модель строения жидкости. Насыщенные и ненасыщенные пары. Влажность воздуха. Поверхностное натяжение и смачивание. Модель строения твердых тел. Механические свойства твердых тел. Аморфные вещества и жидкие кристаллы. Изменения агрегатных состояний вещества.

Внутренняя энергия и работа газа. Первый закон термодинамики. Необратимость тепловых процессов и второй закон термодинамики. Тепловые двигатели и охрана окружающей среды. КПД тепловых двигателей.

Демонстрации

Движение броуновских частиц.

Диффузия.

Изменение давления газа с изменением температуры при постоянном объеме.

Изотермический и изобарный процессы.

Кипение воды при пониженном давлении.

Психрометр и гигрометр.

Явления поверхностного натяжения и смачивания.

Кристаллы, аморфные вещества, жидкокристаллические тела.

Изменение внутренней энергии тел при совершении работы.

Модели тепловых двигателей.

Лабораторные работы

Измерение влажности воздуха.

Измерение поверхностного натяжения жидкости.

Наблюдение роста кристаллов из раствора.

3. ЭЛЕКТРОДИНАМИКА

Взаимодействие заряженных тел. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Электрическое поле. Напряженность поля. Потенциал поля. Разность потенциалов.

Проводники в электрическом поле. Электрическая емкость. Конденсатор. Диэлектрики в электрическом поле.

Постоянный электрический ток. Сила тока, напряжение, электрическое сопротивление. Закон Ома для участка цепи. Последовательное и параллельное соединения проводников. ЭДС источника тока.

Тепловое действие электрического тока. Закон Джоуля—Ленца. Мощность электрического тока.

Полупроводники. Собственная и примесная проводимости полупроводников. Полупроводниковый диод. Полупроводниковые приборы.

Магнитное поле. Постоянные магниты и магнитное поле тока. Сила Ампера. Принцип действия электродвигателя. Электроизмерительные приборы.

Индукция магнитного поля. Магнитный поток. Явление электромагнитной индукции и закон электромагнитной индукции Фарадея. Вихревое электрическое поле. Правило Ленца. Самоиндукция.

Принцип действия электрогенератора. Переменный ток. Трансформатор. Производство, передача и потребление электроэнергии. Проблемы энергосбережения. Техника безопасности в обращении с электрическим током.

Электромагнитное поле и электромагнитные волны. Скорость электромагнитных волн. Принципы радиосвязи.

Свет как электромагнитная волна. Интерференция и дифракция света. Законы отражения и преломления света. Полное внутреннее отражение. Дисперсия света. Различные виды электромагнитных излучений, их свойства и практические применения. Оптические приборы. Разрешающая способность оптических приборов.

Демонстрации

Взаимодействие заряженных тел.

Проводники в электрическом поле.

Диэлектрики в электрическом поле.

Конденсаторы.

Тепловое действие электрического тока.

Собственная и примесная проводимости полупроводников.

Полупроводниковый диод.

Транзистор.

Опыт Эрстеда.

Взаимодействие проводников с токами.

Электродвигатель.

Электроизмерительные приборы.

Электромагнитная индукция.

Зависимость ЭДС самоиндукции от скорости изменения силы тока и индуктивности проводника.

Работа электрогенератора.

Трансформатор.

Излучение и прием электромагнитных волн.

Радиосвязь.

Интерференция света.

Дифракция света.

Законы отражения и преломления света.

Полное внутреннее отражение.

Получение спектра с помощью призмы.

Получение спектра с помощью дифракционной решетки.

Спектроскоп.

Оптические приборы

Лабораторные работы

Изучение закона Ома для участка цепи.

Измерение ЭДС и внутреннего сопротивления источника тока.

Изучение явления электромагнитной индукции.

Изучение интерференции и дифракции света.

4. СТРОЕНИЕ АТОМА И КВАНТОВАЯ ФИЗИКА

Гипотеза Планка о квантах. Фотоэффект. Фотон. Волновые и корпускулярные свойства света. Технические устройства, основанные на использовании фотоэффекта.

Строение атома: планетарная модель и модель Бора. Поглощение и испускание света атомом. Квантование энергии. Принцип действия и использование лазера.

Строение атомного ядра. Ядерная энергетика. Радиоактивные излучения и их воздействие на живые организмы.

Демонстрации

Фотоэффект.

Излучение лазера.

Линейчатые спектры различных веществ.

Счетчик ионизирующих излучений.

5. ЭВОЛЮЦИЯ ВСЕЛЕННОЙ

Эффект Доплера и обнаружение «разбегания» галактик. Большой взрыв. Возможные сценарии эволюции Вселенной.

Эволюция и энергия горения звезд. Термоядерный синтез.

Образование планетных систем. Солнечная система.

Демонстрации

Солнечная система (модель).

Фотографии планет, сделанные с космических зондов.

Содержание обучения в учреждениях НПО (173 час.)

Введение

Физика — наука о природе. Естественно-научный метод познания, его возможности и границы применимости. Моделирование физических явлений и процессов. Роль эксперимента и теории в процессе познания природы. Физические законы. Основные элементы физической картины мира.

1. МЕХАНИКА

Относительность механического движения. Системы отсчета. Характеристики механического движения: перемещение, скорость, ускорение. Виды движения (равномерное, равноускоренное) и их графическое описание.

Взаимодействие тел. Принцип суперпозиции сил. Законы динамики Ньютона. Силы в природе: упругость, трение, сила тяжести. Закон всемирного тяготения. Невесомость.

Закон сохранения импульса и реактивное движение. Закон сохранения механической энергии. Работа и мощность.

Механические колебания. Амплитуда, период, частота колебаний. Механические волны. Свойства механических волн. Длина волны. Звуковые волны. Ультразвук и его использование в технике и медицине.

Демонстрации

Зависимость траектории от выбора системы отсчета.

Виды механического движения.

Зависимость ускорения тела от его массы и силы, действующей на тело.

Сложение сил.

Равенство и противоположность направления сил действия и противодействия.

Зависимость силы упругости от деформации.

Силы трения.

Невесомость.

Реактивное движение.

Переход потенциальной энергии в кинетическую и обратно.

Образование и распространение волн.

Частота колебаний и высота тона звука.

Лабораторные работы

Исследование движения тела под действием постоянной силы.

Изучение закона сохранения импульса и реактивного движения.

Сохранение механической энергии при движении тела под действием сил тяжести и упругости.

2. МОЛЕКУЛЯРНАЯ ФИЗИКА. ТЕРМОДИНАМИКА

История атомистических учений. Наблюдения и опыты, подтверждающие атомно-молекулярное строение вещества. Масса и размеры молекул. Тепловое движение. Абсолютная температура как мера средней кинетической энергии частиц.

Объяснение агрегатных состояний вещества на основе атомномолекулярных представлений. Модель идеального газа. Связь между давлением и средней кинетической энергией молекул газа. Изопроцессы. Модель строения жидкости. Насыщенные и ненасыщенные пары. Влажность воздуха. Поверхностное натяжение и смачивание. Модель строения твердых тел. Аморфные вещества и жидкие кристаллы. Изменения агрегатных состояний вещества.

Внутренняя энергия и работа газа. Первый закон термодинамики. Необратимость тепловых процессов. Тепловые двигатели и охрана окружающей среды. КПД тепловых двигателей.

Демонстрации

Движение броуновских частиц.

Диффузия.

Изменение давления газа с изменением температуры при постоянном объеме.

Изотермический и изобарный процессы.

Кипение воды при пониженном давлении.

Психрометр и гигрометр.

Явления поверхностного натяжения и смачивания.

Кристаллы, аморфные вещества, жидкокристаллические тела.

Изменение внутренней энергии тел при совершении работы.

Модели тепловых двигателей.

Лабораторные работы

Измерение влажности воздуха.

Измерение поверхностного натяжения жидкости.

Наблюдение роста кристаллов из раствора.

3. ЭЛЕКТРОДИНАМИКА

Взаимодействие заряженных тел. Электрический заряд. Закон сохранения электрического заряда. Электрическое поле. Напряженность поля. Проводники и диэлектрики в электрическом поле.

Постоянный электрический ток. Сила тока, напряжение, электрическое сопротивление. Закон Ома для участка цепи.

Тепловое действие электрического тока. Закон Джоуля—Ленца. Мощность электрического тока.

Магнитное поле. Постоянные магниты и магнитное поле тока. Сила Ампера. Принцип действия электродвигателя.

Явление электромагнитной индукции. Принцип действия электрогенератора. Переменный ток. Трансформатор. Производство, передача и потребление электроэнергии. Проблемы энергосбережения. Техника безопасности в обращении с электрическим током.

Электромагнитное поле и электромагнитные волны. Скорость электромагнитных волн. Принципы радиосвязи.

Свет как электромагнитная волна. Интерференция и дифракция света. Законы отражения и преломления света. Дисперсия света. Различные виды электромагнитных излучений, их свойства и практические применения. Оптические приборы.

Демонстрации

Взаимодействие заряженных тел.

Проводники в электрическом поле.

Диэлектрики в электрическом поле.

Тепловое действие электрического тока.

Опыт Эрстеда.

Взаимодействие проводников с токами.

Электродвигатель.

Электроизмерительные приборы.

Электромагнитная индукция.

Работа электрогенератора.

Трансформатор.

Излучение и прием электромагнитных волн.

Радиосвязь.

Интерференция света.

Дифракция света.

Законы отражения и преломления света.

Получение спектра с помощью призмы.

Оптические приборы

Лабораторные работы

Изучение закона Ома для участка цепи.

Изучение явления электромагнитной индукции.

Изучение интерференции и дифракции света.

4. СТРОЕНИЕ АТОМА И КВАНТОВАЯ ФИЗИКА

Гипотеза Планка о квантах. Фотоэффект. Фотон. Волновые и корпускулярные свойства света. Технические устройства, основанные на использовании фотоэффекта.

Строение атома: планетарная модель и модель Бора. Поглощение и испускание света атомом. Квантование энергии. Принцип действия и использование лазера.

Строение атомного ядра. Энергия расщепления ядра и ядерная энергетика. Радиоактивные излучения и их воздействие на живые организмы.

Демонстрации

Фотоэффект.

Излучение лазера.

Линейчатые спектры различных веществ.

Счетчик ионизирующих излучений.

5. ЭВОЛЮЦИЯ ВСЕЛЕННОЙ

Эффект Доплера и обнаружение «разбегания» галактик. Большой взрыв. Возможные сценарии эволюции Вселенной.

Эволюция и энергия горения звезд. Термоядерный синтез.

Образование планетных систем. Солнечная система.

Демонстрации

Солнечная система (модель).

Фотографии планет, сделанные с космических зондов.

Содержание обучения в учреждениях СПО (156 час.)

Введение

Физика — наука о природе. Естественно-научный метод познания, его возможности и границы применимости. Моделирование физических явлений и процессов. Роль эксперимента и теории в процессе познания природы. Физические законы. Основные элементы физической картины мира.

1. МЕХАНИКА

Относительность механического движения. Системы отсчета. Характеристики механического движения: перемещение, скорость, ускорение. Виды движения (равномерное, равноускоренное) и их графическое описание.

Взаимодействие тел. Принцип суперпозиции сил. Законы динамики Ньютона. Силы в природе: упругость, трение, сила тяжести. Закон всемирного тяготения. Невесомость.

Закон сохранения импульса и реактивное движение. Закон сохранения механической энергии. Работа и мощность.

Механические колебания. Амплитуда, период, частота колебаний. Свободные и вынужденные колебания. Резонанс. Механические волны. Свойства механических волн. Длина волны. Звуковые волны. Ультразвук и его использование в технике и медицине.

Демонстрации

Зависимость траектории от выбора системы отсчета.

Виды механического движения.

Зависимость ускорения тела от его массы и силы, действующей на тело.

Сложение сил.

Равенство и противоположность направления сил действия и противодействия.

Зависимость силы упругости от деформации.

Силы трения.

Невесомость.

Реактивное движение.

Переход потенциальной энергии в кинетическую и обратно.

Свободные и вынужденные колебания.

Резонанс.

Образование и распространение волн.

Частота колебаний и высота тона звука.

Лабораторные работы

Исследование движения тела под действием постоянной силы.

Изучение закона сохранения импульса и реактивного движения.

Изучение зависимости периода колебаний нитяного (или пружинного) маятника от длины нити (или массы груза).

2. МОЛЕКУЛЯРНАЯ ФИЗИКА. ТЕРМОДИНАМИКА

История атомистических учений. Наблюдения и опыты, подтверждающие атомно-молекулярное строение вещества. Масса и размеры молекул. Тепловое движение. Абсолютная температура как мера средней кинетической энергии частиц.

Объяснение агрегатных состояний вещества на основе атомномолекулярных представлений. Модель идеального газа. Связь между давлением и средней кинетической энергией молекул газа. Изопроцессы. Модель строения жидкости. Насыщенные и ненасыщенные пары. Влажность воздуха. Поверхностное натяжение и смачивание. Модель строения твердых тел. Механические свойства твердых тел. Аморфные вещества и жидкие кристаллы. Изменения агрегатных состояний вещества.

Внутренняя энергия и работа газа. Первый закон термодинамики. Необратимость тепловых процессов. Тепловые двигатели и охрана окружающей среды. КПД тепловых двигателей.

Демонстрации

Движение броуновских частиц.

Диффузия.

Изменение давления газа с изменением температуры при постоянном объеме.

Изотермический и изобарный процессы.

Кипение воды при пониженном давлении.

Психрометр и гигрометр.

Явления поверхностного натяжения и смачивания.

Кристаллы, аморфные вещества, жидкокристаллические тела.

Изменение внутренней энергии тел при совершении работы.

Модели тепловых двигателей.

Лабораторные работы

Измерение влажности воздуха.

Измерение поверхностного натяжения жидкости.

Наблюдение роста кристаллов из раствора.

3. ЭЛЕКТРОДИНАМИКА

Взаимодействие заряженных тел. Электрический заряд. Закон сохранения электрического заряда. Электрическое поле. Напряженность поля. Проводники и диэлектрики в электрическом поле.

Постоянный электрический ток. Сила тока, напряжение, электрическое сопротивление. Закон Ома для участка цепи. Последовательное и параллельное соединения проводников.

Тепловое действие электрического тока. Закон Джоуля—Ленца. Мощность электрического тока.

Магнитное поле. Постоянные магниты и магнитное поле тока. Сила Ампера. Принцип действия электродвигателя. Электроизмерительные приборы.

Явление электромагнитной индукции. Принцип действия электрогенератора. Переменный ток. Трансформатор. Производство, передача и потребление электроэнергии. Проблемы энергосбережения. Техника безопасности в обращении с электрическим током.

Электромагнитное поле и электромагнитные волны. Скорость электромагнитных волн. Принципы радиосвязи.

Свет как электромагнитная волна. Интерференция и дифракция света. Законы отражения и преломления света. Полное внутреннее отражение. Дисперсия света. Различные виды электромагнитных излучений, их свойства и практические применения. Оптические приборы. Разрешающая способность оптических приборов.

Демонстрации

Взаимодействие заряженных тел.

Проводники в электрическом поле.

Диэлектрики в электрическом поле.

Тепловое действие электрического тока.

Опыт Эрстеда.

Взаимодействие проводников с токами.

Электродвигатель.

Электроизмерительные приборы.

Электромагнитная индукция.

Работа электрогенератора.

Трансформатор.

Излучение и прием электромагнитных волн.

Радиосвязь.

Интерференция света.

Дифракция света.

Законы отражения и преломления света.

Полное внутреннее отражение.

Получение спектра с помощью призмы.

Спектроскоп.

Оптические приборы

Лабораторные работы

Изучение закона Ома для участка цепи.

Изучение явления электромагнитной индукции.

Изучение интерференции и дифракции света.

4. СТРОЕНИЕ АТОМА И КВАНТОВАЯ ФИЗИКА

Гипотеза Планка о квантах. Фотоэффект. Фотон. Волновые и корпускулярные свойства света. Технические устройства, основанные на использовании фотоэффекта.

Строение атома: планетарная модель и модель Бора. Поглощение и испускание света атомом. Квантование энергии. Принцип действия и использование лазера.

Строение атомного ядра. Энергия связи. Связь массы и энергии. Ядерная энергетика. Радиоактивные излучения и их воздействие на живые организмы.

Демонстрации

Фотоэффект.

Излучение лазера.

Линейчатые спектры различных веществ.

Счетчик ионизирующих излучений.

5. ЭВОЛЮЦИЯ ВСЕЛЕННОЙ

Эффект Доплера и обнаружение «разбегания» галактик. Большой взрыв. Возможные сценарии эволюции Вселенной.

Эволюция и энергия горения звезд. Термоядерный синтез.

Образование планетных систем. Солнечная система.

Демонстрации

Солнечная система (модель).

Фотографии планет, сделанные с космических зондов.

ПРИМЕРНЫЙ ТЕМАТИЧЕСКИЙ ПЛАН

	Количество часов		
Наименование раздела	Естественнонаучный профиль		
	НПО		СПО
	234	173	156
Введение	3	3	3
1. Механика	44	38	34
2. Молекулярная физика.	44	40	36
Термодинамика			
3. Электродинамика	92	60	50
4. Строение атома и квантовая физика	22	22	22
5. Эволюция Вселенной	8	8	8
Физический практикум	12	_	_
Резерв учебного времени	9	2	3
Итого	234	173	156

ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОБУЧЕНИЯ

В результате изучения учебной дисциплины «Физика» обучающийся должен:

знать/понимать:

- смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная:
- **смысл физических величин:** скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;
- **смысл физических законов** классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;
- вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики;

уметь:

- описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;
- отличать гипотезы от научных теорий;
- делать выводы на основе экспериментальных данных;
- приводить примеры, показывающие, что: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления;
- приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;
- воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях.

- применять полученные знания для решения физических задач*;
- **определять** характер физического процесса по графику, таблице, формуле * ;
- **измерять ряд** физических величин, представляя результаты измерений с учетом их погрешностей^{*};

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

- для обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи;
- оценки влияния на организм человека и другие организмы загрязнения окружающей среды;
- рационального природопользования и защиты окружающей среды.

_

^{*} При изучении физики как профильного учебного предмета.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Для обучающихся

Генденштейн Л.Э., Дик Ю.И. Физика. Учебник для 10 кл. – М., 2005. Генденштейн Л.Э. Дик Ю.И. Физика. Учебник для 11 кл. – М., 2005.

Громов С.В. Физика: Механика. Теория относительности. Электродинамика: Учебник для 10 кл. общеобразовательных учреждений. – М., 2001.

Громов С.В. Физика: Оптика. Тепловые явления. Строение и свойства вещества: Учебник для 11 кл. общеобразовательных учреждений. – М., 2001.

Дмитриева В.Ф. Задачи по физике: учеб. пособие. – М., 2003.

Дмитриева В.Ф. Физика: учебник. – М., 2003.

Касьянов В.А. Физика. 10 кл.: Учебник для общеобразовательных учебных заведений. – М., 2005.

Касьянов В.А. Физика. 11 кл.: Учебник для общеобразовательных учебных заведений. – М., 2003.

Самойленко П.И., Сергеев А.В. Сборник задач и вопросы по физике: учеб. пособие. - М., 2003.

Самойленко П.И., Сергеев А.В. Физика (для нетехнических специальностей): учебник. – М., 2003.

Для преподавателей

Громов С.В. Шаронова Н.В. Физика, 10—11: Книга для учителя. – М., 2004.

Кабардин О.Ф., Орлов В.А. Экспериментальные задания по физике. 9—11 классы: учебное пособие для учащихся общеобразовательных учреждений. – М., 2001.

Касьянов В.А. Методические рекомендации по использованию учебников В.А.Касьянова «Физика. 10 кл.», «Физика. 11 кл.» при изучении физики на базовом и профильном уровне. – М., 2006.

Касьянов В.А. Физика. 10, 11 кл. Тематическое и поурочное планирование. – M., 2002.

Лабковский В.Б. 220 задач по физике с решениями: книга для учащихся 10—11 кл. общеобразовательных учреждений. – М., 2006.

Федеральный компонент государственного стандарта общего образования / Министерство образования РФ. – М., 2004.

СОДЕРЖАНИЕ

Пояснительная записка	3
ТЕХНИЧЕСКИЙ ПРОФИЛЬ	6
Примерное содержание учебной дисциплины	6
Содержание обучения в учреждениях НПО (273 час.)	6
Содержание обучения в учреждениях НПО (178 час.)	11
Содержание обучения в учреждениях СПО (195 час.)	15
Примерный тематический план	19
ЕСТЕСТВЕННОНАУЧНЫЙ ПРОФИЛЬ	20
Примерное содержание учебной дисциплины	20
Содержание обучения в учреждениях НПО (234 час.)	20
Содержание обучения в учреждениях НПО (173 час.)	24
Содержание обучения в учреждениях СПО (156 час.)	28
Примерный тематический план	32
Требования к результатам обучения	33
Рекомендуемая литература	35

Пентин Александр Юрьевич

ПРИМЕРНАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ФИЗИКА

для профессий начального профессионального образования и специальностей среднего профессионального образования

Ответственный за выпуск: Е.А. Рыкова, Л.Ю. Березина Лаборатория содержания и технологий общего образования в системе НПО и СПО Центра профессионального образования ФИРО

Компьютерный набор: С.Г. Кузнецова

Корректор: Г.Н. Петрова

Отзывы и пожелания просим направлять по адресу: 125319, Москва, ул. Черняховского, 9. Федеральный институт развития образования Минобрнауки России